

西安工业学院＂十五＂规划教材

电子技术

郑长风 赵建华 编

要北工素大学出版社

高等学校教材

郑长风 赵建华 编

使！

图书在版编目（CIP）数据

电厂技术实验郑に风。赵建华编．．．西安：西北工业大学出版社，2005． 1
ISBN 7－5612－1878－8
1．白… II．T 欮… 3 赵… III．电子技术…实验 高等学校 教材 N．TN 33中国版本图书管CIP数据核字（2004）第142720号

出版发行：要北 1．业大学出版社。
通信地址：西安布友誼西路 127 号 服编： 710072
电 话：（029）88493844 88491757
网 址：www．nwpup．com
印 刷 者：陕䧋兴平所印刷厂
开
本： $787 \mathrm{~mm} \times 1092 \mathrm{~mm} \quad 1 / 16$
印 张：12．5
字 数： 300 下•
版 次：2005年 吕月第1版2005年2月第1次印刷
定 价：16．00 元

目 录

第1章 模拟电路基础实验

1.3 多级放大电路 …．． 11

1.12 整流，滤波与稳压电路•

第2章 数字电路基础实验

3.4 温度测量，超温报警及控制系统设计 ．．
诸 83
及字列码检测器的设沙
器 9）
扎路 91
路
坦报电路
坦报电路 － － 9 9
3．11＂线日时装箱设备笽控器
3．11＂线日时装箱设备笽控器3.12 便件优先排队电路97
3.13 篮球比寒计分显东系统 99
第 4 章 EWB 在电子技术实验中的应用 102
4． 1 Electronics Work Bench ED Λ 软件及其使用方法 102
4．1．1 EW1 软件简介 102
4．1．2 怎样建立实验电路 105
1.2 虚拟实验举例 125
4．2．1 单管放大电路 12.
4．2．2 运放运算电路实验 129
4．2．3 集成计数器实验 131
4．2．4555定时器及其应用 133
第5章 实验电路的安装与调试 138
3． 1 实验电路的安装 138
5.2 电路调试技术 141
5.3 故障检测的一般方注 142
5． 4 数字集成电路使用须知 148
第 6 章 常用仪器设备的简介与使用 150
6．1 TPE－AD电子技术学习机 150
6．2（5020（HH4310）双踪示波器 154
6．3 XD2C 与 XD2 型低频信号发生器 157
6．4 NY4510 型交流急伏表 160
第7章 电子电路测量技术的基本知识 163
7.1 千扰源 163
7.2 误差分析与测量结果的处理 163
7.3 系统增益或衰减的测量 166
7.4 系统频率特性的测量 167
7.5 系统输入，输出电阻的测量 167
附冰—的个常朋数字集成电路引脚图
附冰了部分常用线性集成电路引脚图 192156

> 五, 预习晋求

> 淔为 1 V时。化, 为多少?
> 3. 拟定实验步骤, 做好记永表格。

六，实验报告要求

1．整埋实俭旮的数据以波形，总结积分，微分电路特点。
2．分析实验结果与理论计算的误差原因。

1.8 电压比较器

一，实验目的

1．掌握比较器的电路构成及特点。
2．学会测试比较器的方法。

二，实验原理

1．单限比较器。
图1．8．1为一同相过零比较器电路原理图，当输，入电压 u_{i} 变化经过零点时，输出电压从一。个电平跳变到多…个电平。

2．滞回比较器。
图1．8．2为运放组成的反相滞回比较器，图中输出端两稳压管为双向限偪器。决定输任蝠度，R 。起限流作用，R_{1} 为均衡输入电阳，R_{2}, R_{F} 决定电路的滞回特性，滞回比较器具有良好的抗干扰作用。
$\begin{array}{ll}\text { 滞国比较器的下门限：} & U_{1}=-\frac{R_{3}}{R_{2}+R_{Y}} U_{Z} \\ \text { 滞回比较器的上门限：} & U_{\mathrm{Z}}=+\frac{R_{2}}{R_{\mathrm{Z}}+R_{\mathrm{F}}} U_{Z}\end{array}$

三，实验内容

1．过零比较器。
实验电路如图1．8．1所示。
（1）按图1．8．1接线，u_{i} 端悬空时测输出电压 u_{0} 。
（2）输入频率为 500 Hz ，有效值为 1 V 的正弦波，观察 u_{i} 和 u_{0} 波形，并记录。
（3）改变 u_{i} 幅值，观察 u_{0} 的变化。
2．反相滞问比较器。

图1．8．1 过零比较器

图1．8．2 反相滞回比较器

实验电路如图1．8．2所示。
（1）按图1．8．2接线，并将 R_{i} 调为 $100 \mathrm{k} \Omega, u_{\mathrm{i}}$ 接直流电压源。测出 u_{0} 由 $+U_{\mathrm{on}}$ 变为 $\cdots U_{\mathrm{om}}$时 u_{i} 的临界值。

同上步骤，测出 u_{o} 由 $-U_{\mathrm{om}}$ 变为 $+U_{\mathrm{om}}$ 时 u_{i} 的临界值。

（4）将电路中 R_{F} 调为 $200 \mathrm{k} \Omega$ ，重复上述实验。
3．同相滞回比较器。
实验电路如图1．8．3所示。

图1．8．3 同相滞回比较器
参照 2 （反相滞回比较器）自拟实验步骤及方法，将结果与实验内容 2 相比较。

四，实验仪器

1．双踪示波器 1 台。
2．信号发生器 1 台。
3．数字万用表1只。
4．综合实验箱 1 台。

五，预习要求

1．分析图1．8．1电路，回答以下问题：
（1）比较器是否需要调零？原因何在？
（2）比较器的两个输入端电阻是否要求对称？为什么？
（3）运算放大器的两个输入端电位差如何估计？
2．分析图1．8．2电路，计算：

1）使u $H+U_{\mathrm{om}}$ 变为 $-U_{\mathrm{om}}$ 的 u_{i} 临界值。
使 $\quad 1: U_{\mathrm{mm}}$ 变为 $+U_{\text {om }}$ 的 u_{i} 临界值。

3．分析图 1.8 .3 电路，重复上述 2 中的各 4 䠫
4．按实验内容准备记录表格及记录波形的坐㭂我

六，实验报告要求

1．整理实验数据及波形，并与预马计算值相比较
2．总结这三种比较器的特点。

1.9 集成运放 RC 正弦波振荡器

一，实验目的

1．掌握桥式 RC 正弦波振荡器的电路构成及工作原理。
2．熟悉 RC 正弦波振荡器的调整，测试方法。
3．观察参数 R, C 变化对振荡器频率的影响，学习振荡频率的测定方法。

二，实验原理

RC 正弦波振荡电路是 RC 串并联式正弦波振荡电路，又称为文氏桥正弦波振荡器。此电路由放大电路和反馈网络（包括选频网络）两部分组成，它的主要特点是采用 RC 串并联网络作为选频和反馈，放大电路采用集成运放。根据振荡条件即可写出对放大电路的要求。由于在 $f=f_{0}$ 时， RC 反馈网络的 $\varphi=0^{\circ},|F|=1 / 3$ ，所以放大电路的输出与输入之间的相位关系应是同相，放大倍数不能小于 3 ，即用放大倍数为 3 （起振时应大于 3）的同相比例器作为放大电路，如图1．9．1所示。

图1．9．1 文氏桥止弦波挀淴电路

> 3 输入与非门1片;
> ; 踰 1 只;

3.7 红外遥控报警器

一，实验冒的

1．广解红外遥控电路的工作原理，电路组成。
2．掌提红外遥控电路的设计方法和调试方法。
3．培养综合应用电路的能力。

二，实验原理

1．红外遥控报警器的工作原理。
本实验的任务是设计一个红外谣控报警器。要求当有人遮挡红外光时应发计报驚德号，无人遮挡红外光时报警器不工作，即不发声。根据要求，红外遥控器应山两部分组成，即红外发射电路和红外接收电路。图3．7．1为红外信号发射电路框图。它是由自激多谐振落器，功率放大器，细外发光二极管组成。自激多谐振荡器产生几十 kH 二的不对称脉冲，此脉冲为红外光的调制脉冲，调制脉冲经功率放大后控制红外发光二极管发射红外光脉冲。红外信号接收电路框图如图3．7．2所示。此电路由红外光电管放大，整流，报警电路组成。把红外脉冲转换成电信号，即解调出调制脉冲，然后把此信号放大，整流变成直流信号，控制报警器不工作。当红外光脉冲被人遮挡时，则报警器工作发出报警声。

图
3.7 .1

图 3．7．2

2．参考电路。
红外发射电路如图3．7．3所示。

图 3.7 .3

外外收电济如图3．7．4所示。

13.7 .1

三，实验内容

1．在实验板上装好红外发射电路，检查无误㕆加电。调整振荡辝频率在 30 kHz 左右，并记下脉冲波形，幅度，频率。

2．在另一块实验板上装好红外接收电路，检查无误后加电，加信号源，测量放大器的增益。
3．调整报警器的工作频率在 800 Hz 有有。
4．观繁有尤红外信号时整流器输出的变化和报警器工作是否正常。
5．把发射电路逐渐离开接收电路，使报警器都能正常T作为止，测出两者间的距离。

四，预习要求

1．设计一个红外遥控报警器。要求：
（1）设计一个红外发射器。调制频率为 30 kHz ；
（2）设计一个红外接收器，当无人遮挡红外光时，报警器不发出报警信号。当有人遮挡光源时，报警器发声，报警信号频率为 800 Hz ；
（3）控制距离 2 m 以上。
2．主要器材：红外管 SE303，PH302．F007，555定时器．3DG101．3DG130，喇叭。
3．列出所需元器件清单及仪器。

五，实验报告要求

1．设计计算过程及电路图。
2．实验数据。
3．对实验结果进行分析讨论。

3.8 方波，锯齿波产生电路

一，实验目的

1．熟悉运算放大器的原理和应用。选择合适的电路产生各种常用的函数波形。

2.3 译码器和数据选择器

—，实验目的

二，实验原理

1．译码器。
译码器是一个多输入，多输出的组合䢙辑电路，其功能是将输入的一组二进制代码翻译成与其对应的特定含义（如十进制数，地找线，指令等）。这样，在同一时刻，只有…个输出端上有信号。为了减小体积，提高集成度，MSI译码器通常将其输出设计成低电平有效的形式。

MSI 泽码器都有一个使能端（片选端），利用它可以扩展译码器的为能。
译码器…般分为两类：…类是不完全译码器，如七段字形译码器，与…类是最小项译码器，如双2－4线译的器（74LS139），3－8线译码器（74LS138），4－16线译码器（74LS154）等。这里只介绍最小项译码器。
n 个变量的译䃇器其输出与输人的关系叮表示为

$$
Y_{1}=m_{i}
$$

式中，$m_{\text {i }}$ 是由 n 个变量构成的最小项。
译码器的每一个输出端都对应于输入变量的一个最小项，整个译码器给出了全部最小项，相当于一个个最小项发生器，而任一逻辑函数都可以用若干最小项之和的形式表示。因此，译码器辅以适当的逻辑门，即可实现任何逻辑函数，而不必进质逻辑函数化简。

例1 用二变量译码器（74LSS138）设计一位金加器。
解（1）与出全加器逻辑表达式。
全加和

$$
S=A B C_{0}+A B C_{n}+A B C_{0}+A B C_{0}
$$

进位

$$
C=\Lambda B C_{0}+A B C_{0}+A B C_{0}+A B C_{0}
$$

（2）将 S ，C改志为

$$
\begin{aligned}
& S=m_{1}+m_{2}+m_{4}+m_{7}=\overline{m_{1} \cdot m_{2} \cdot m_{4} \cdot m_{7}}=\overline{Y_{1} \cdot Y_{2} \cdot Y_{4} \cdot Y_{7}} \\
& C=m_{3}+m_{5}+m_{6}+m_{7}=\overline{m_{3} \cdot m_{3} \cdot m_{6} \cdot m_{7}}=\overline{Y_{3} \cdot Y_{5} \cdot Y_{6} \cdot Y_{7}}
\end{aligned}
$$

（3）画出逻辑图如图2．3．1所示。
若选用双 2－4线译码器74LS139，因该译码器只有两个地址输入端，只能对应两个输人变量，利用使能端可将其扩展为 $3-8$ 线译码器。

对于任意一个二变量的函数表达式总可以至成它的分解式，即

$$
F\left(A_{2}, A_{1}, \Lambda_{0}\right)=A_{2} F_{1}\left(\Lambda_{1}, A_{0}\right)+A_{2} F_{2}\left(\Lambda_{1}, A_{4}\right)
$$

式中，$F_{1}\left(A_{1}, A_{0}\right)$ 利 $F_{2}\left(\Lambda_{1}, A_{i}\right)$ 用2－4线译码器实现，则上式可用两块同样的译码器来连接。如图2．3．2所示。

图2．3．1 用741．5138设计全用器
在图2．3．2中，当 $A_{2}=0$ 时，译码器 74LS193（1）工作，输出 $m_{3} \sim m_{6}$ ，当 $A_{2}=1$ 时，译码

图2．3．3 用双2－4线译码器实现全加器

2．数据选择器。

数据选择器又称多路开关（MUX），是 \cdots 个多输入单输出的组合迻辑电路（有的具有互补输出端）。其基本工作原理类似于单刀多掷开关。它在地址矿（或称选择器输入端）的控制下，将某一路的输入作为输出，以实现多通道数据传输。

数据选择器的种类有74LS157（双…选…）， 74LS154（双四选一），74LS151（八选一），74LS150 （十六选一）等。

图2．3．4为四选… MUX的原理图符告及等效开关。数据选择器的管脚图及功能表见附录。

图 2.3 .4
（a）符皆；（b）等效开炎

使能信号 E 为低电平有效。当 $\vec{E}=0$ 时，输出，输入的关系为

$$
Y=\sum m_{i} I_{i}
$$

－＂：（ -3 ）为 A, B 两变量构成的最小项。
中＂中输入地圤的 MUX，其输出，输入的关系可表示为

$$
Y=\sum m
$$

考功能器件

例2 试用名路选择器实现選辑函数

$$
F(A \cdot B \cdot C)=A C+A C+B+A B C
$$

解 先将函数 F 展开成最小项表达式，得

$$
F(A . B . C)=m_{11}+m_{1}+m_{3}+m_{1}+m_{5}+m_{6}
$$

量然有

$$
\begin{array}{lll}
I_{0}=1, & I_{3}=1, \quad I_{2}=0, \quad I_{3}=1 \\
I_{i}=1, & I_{3}=1 . \quad I_{3}=1, \quad I_{3}=0
\end{array}
$$

将变量 A, B, C 接人地址输入端 A, B, C 。由此叮以再出用八选 …MUX741．S151 实现的逻辑电路，如图2．3．5所示。其中 E 为使能湍。

例3 试用74LS151 实现逻辑䀠数

$$
F\left(A, B,(, D)=\sum(0,2,3.7,8,9,10.12 .13)\right.
$$

图 2.3 .5

解 由 由 74 LS 151 只有二个地址输人端，而函数 F 有四个变量，因此应将函数 F 适当处理，即括出‥个变量（如变量 A ）然后进行合并，如图2．3．6所示。由此得

$$
\begin{aligned}
& I_{0}=1, \quad I_{1}=A, \quad I_{2}=1, \quad I_{3}=A \\
& I_{4}=A, \quad I=A, \quad I_{6}=0, \quad I_{7}=A
\end{aligned}
$$

将 $B, C . D$ 分別接入 $74 \mathrm{~L} . \mathrm{S} 151$ 的地地端 A, B, C ，实现该函数的逻辑图如图2．3．7所小。
数据选择器除用来实现逻辑函数外，还可以和计数器一起实现序列碍发生器（请参阅 3.6 节）。

12.3 .6

图 2.3 .7

天实酸力容

3．用 741.5138 实现一位全减器，记录实騟棵果
4．用 74L．S139实现三变量多数表決电路。汇冰实验结果。
8．用74LS1．51实现三变量多数表决电路，记录实验结果。

四，实验仪器

1．电子技术学习机 1 台。
2．器件：74LS20．741．S138，74LS139，74LS151各1片。

五，预习要求

1．查阅附录，熟悉 74LS138．74LS139和74LS151的管脚及功能。
2．按实验内容要求画好实验电路接线图，以此作为实验依据。

六，实验报告要求

1．画出各实验步骤的实验电路逻辑图，整理实验结果，并对实验结杲进行分析。
2．总结译码器及数据选择器的功能及使用方法。
3．总结用中规模器件设计实现造辑函数的步摖和方法。

七，思考题

如何将 3－8线译吗器扩展成 4－16线译码器。再出迻辑图。

2.4 触发器及其应用

一，实验目的

1．熟悉常用的 TTL．CMOS触发器的基本结构及其㑩辑功能。
2．掌握触发器的正确使用房法。

二，实验原理

触发器是组成时序選辑电路的最基本器件，在数字系统和计算机中有着广＂泛的应用。月前，集成触发器不仪作为独立施集成元件被大量使用，它还是组成计数器，移位寄存器及时序电路的基本单元电路。因此，熟悉各类触发器的功能，能熟练地应用各种集成触发器，就显得十分必要。

1．触发器按电路结构川分为国种，即钟控式，维持阻塞式，主从式和边沿触发式。
钟控式触发器属于电平触发方式。由于存在空翻现象，因此不能用作计数器或移位奇存器，它只能用于 $C P=1$ 期间输入信号不变化的那些场合，维持阻塞式和边沿触发式触发器能

